Cooperative Haptics for Humanoid Robot Teleoperation Master Thesis Presentation

João O. Barros

joaoobarros@ua.pt

University of Aveiro - Department of Mechanical Engineering

Scientific supervision: Prof. Dr. Vítor Manuel Ferreira dos Santos Prof. Dr. Filipe Miguel Teixeira Pereira da Silva

December 11, 2014

Introduction

- V-REP Model Construction
- Experimental Setup
- **Control Strategies**
- Experiments and Results

Conclusions

João O. Barros

What is *haptics*?

Haptic interaction with the world refers to sensing and manipulation using our **sense of touch**. *Computer haptics* technology interfaces the user with a virtual environment via the sense of touch by applying forces, vibrations, and/or motions to the user.

PHUA project

The main goal is the development and integration of hardware and software components in a functional low-budget platform, to perform studies in balance and locomotion tasks.

An approach for kinesthetic teaching is proposed, in which the user interactively demonstrates a specific motion task, while feeling the dynamics of the system through a haptic interface – tele-kinesthetic teaching.

PHUA project

The main goal is the development and integration of hardware and software components in a functional low-budget platform, to perform studies in balance and locomotion tasks.

 An approach for kinesthetic teaching is proposed, in which the user interactively demonstrates a specific motion task, while feeling the dynamics of the system through a haptic interface
 tele-kinesthetic teaching.

PHUA project Robot's current form

- Anthropometrically built
- 27 degrees-of-freedom
- Hybrid actuation system
- Force sensors
- Artificial vision system
- Inertial sensors

PHUA project PHANToM OMNI haptic device

> The haptic device used was the PHANToM OMNI, a groundbased haptic joystick.

Objectives

- Adaption/creation of a humanoid model in V-REP, and definition of its kinematic chains according to PHUA robotic platform;
- Definition of the force feedback developed towards the user;
- Setting up the communication between the two haptic devices;
- Basic teleoperation of the PHUA model in V-REP, with one joystick;
- Teleoperation of the V-REP model in more complex tasks, with two joysticks;
- Test and recording of motion parameters during the simulation of different locomotion patterns;
- Experiments in the real robot.

V-REP model construction - stages

CAD model import

- 2 Pure shapes extraction
- 3 Inertial parameters definition
- Shape linkage (joints and force sensors);
- 5 Kinematic chains definition

V-REP model construction - stages

1 CAD model import

- **2** Pure *shapes* extraction
- Inertial parameters definition
- Shape linkage (joints and force sensors);
- 6 Kinematic chains definition

V-REP model construction - stages

- 1 CAD model import
- **2** Pure *shapes* extraction
- **3** Inertial parameters definition
- Shape linkage (joints and force sensors);
- 6 Kinematic chains definition

V-REP model construction - stages

- CAD model import
- **2** Pure *shapes* extraction
- **3** Inertial parameters definition
- Shape linkage (joints and force sensors);
- **5** Kinematic chains definition

V-REP model construction - stages

- CAD model import
- **2** Pure *shapes* extraction
- **3** Inertial parameters definition
- Shape linkage (joints and force sensors);
- 6 Kinematic chains definition

CAD model import

 CAD model parts were rearranged and redefined to match the real robot's body links and DOFs.

• Pure *shapes* are used for dynamic simulations.

Approximated model for dynamic simulation

External appearance

Optimized model

Joints and force sensors

Model kinematic chains

Force sensors implementation

João O. Barros

Kinematic chains definition

 All the elements of the mechanism are linked together to build the legs and arms kinematic chains.

Hardware and software solutions

ROS distributed system.

ROS modules' interaction

ROS modules' interaction

ROS modules' interaction

ROS modules' interaction

ROS modules' interaction

ROS modules' interaction

The position command defines a closed loop between the V-REP model and the PHANToM device(s).

Inverse kinematics correspondence

► The robot's end-effector will follow the joystick position.

Joint space correspondence

 A joint-by-joint control is implemented between the joysticks and the robot legs.

Force feedback formulation Stability deviation and instability approach

Force feedback formulation Force components weighting

$$egin{aligned} & m{F}_{m{R}} = rac{1}{\eta+1} \cdot m{F}_1 + rac{\eta}{\eta+1} \cdot m{F}_2 & (N) \ & m{F} = F(s) \cdot rac{COP}{\|COP\|} & (N) \ & m{\eta} = \left|rac{\Delta F_2}{\Delta F_1}
ight| \end{aligned}$$

João O. Barros

Inverse kinematics control mode

Joint state evolution

João O. Barros

Inverse kinematics control mode

Force rendered by the haptic device

Force rendering

João O. Barros

Conclusions

- Simulating the teleoperation scenario in a virtual environment provides many benefits to the operator;
- Dynamically-rich simulations were possible, with very satisfying results;
- Occasional glitches due to a defective contact with the ground were the main problem registered in this work;
- The dual PHANToM OMNI configuration was successfully implemented, by means of a well designed ROS framework;
- The developed force generation algorithms were successful for testing purposes, but this formulation still needs improvement, particularly in *joint-by-joint* control;
- When controlled in the dual joystick configuration, the V-REP model offers a wide range of teleoperation possibilities.

Future work suggestions

- Foot plates construction should be reviewed;
- Force generation algorithms can be further developed in terms of mathematical formulation, using extra sensory information;
- Metrics of the user's performance during the teleoperation should be defined, since they are crucial in what concerns to the learning process;
- Exploring new scenarios, as uneven terrains, and include external disturbances are within the next goals in simulation;
- Test typical gait patterns using a *path planning* strategy;
- A support bracket for the haptic joysticks should be designed, in order to truly implement, and ease the bimanual teleoperation;
- Adaption of dual joystick configuration to the real PHUA platform.

Cooperative Haptics for Humanoid Robot Teleoperation Master Thesis Presentation

João O. Barros

joaoobarros@ua.pt

University of Aveiro - Department of Mechanical Engineering

Scientific supervision: Prof. Dr. Vítor Manuel Ferreira dos Santos Prof. Dr. Filipe Miguel Teixeira Pereira da Silva

December 11, 2014